Applicability of Multi-Frequency Passive Microwave Observations and Data Assimilation Methods for Improving NumericalWeather Forecasting in Niger, Africa

نویسندگان

  • Mohamed Rasmy
  • Toshio Koike
  • Xin Li
چکیده

The development of satellite-based forecasting systems is one of the few affordable solutions for developing regions (e.g., West Africa) that cannot afford ground-based observation networks. Although low-frequency passive microwave data have been used extensively for land surface monitoring, the use of high-frequency passive microwave data that contain cloud information is very limited over land because of strong heterogeneous land surface emissions. The Coupled Atmosphere and Land Data Assimilation System (CALDAS) was developed by merging soil moisture information estimated from low-frequency data with corresponding high-frequency data to estimate cloud information and, thus, improve weather forecasting over Niger, West Africa. The results showed that the assimilated soil moisture and cloud distributions were reasonably comparable to satellite retrievals of soil moisture and cloud observations. However, assimilating soil moisture alone within a mesoscale model produced only marginal improvements in the forecast, whereas the assimilation of both soil moisture and cloud distributions improved the simulation of temperature and humidity profiles. Rainfall forecasts from CALDAS also correlated well with satellite retrievals. This indicates the potential use of CALDAS as a reliable forecasting tool for developing regions. Further developments of CALDAS and the inclusion of data from several other sensors will be researched in future studies. Remote Sens. 2014, 6 5307

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The added value of spaceborne passive microwave soil moisture retrievals for forecasting rainfall-runoff partitioning

[1] Using existing data sets of spaceborne soil moisture retrievals, streamflow and precipitation for 26 basins in the United States Southern Great Plains, a 5-year analysis is performed to quantify the value of soil moisture retrievals derived from the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) X-band (10.7 GHz) radiometer for forecasting storm event-scale runoff ratios....

متن کامل

Synergistic Use of Remote Sensing for Snow Cover and Snow Water Equivalent Estimation

An increasing number of satellite sensors operating in the optical and microwave spectral bands represent an opportunity for utilizing multi-sensor fusion and data assimilation techniques for improving the estimation of snowpack properties using remote sensing. In this paper, the strength of a synergistic approach of leveraging optical, active and passive microwave remote sensing measurements t...

متن کامل

A land data assimilation system for simultaneous simulation of soil moisture and vegetation dynamics

Despite the importance of the coupling between vegetation dynamics and root-zone soil moisture in land-atmosphere interactions, there is no land data assimilation system (LDAS) that currently addresses this issue, limiting the capacity to positively impact weather and seasonal forecasting. We develop a new LDAS that can improve the skill of an ecohydrological model to simulate simultaneously su...

متن کامل

Development of AMSR and AMSR-E retrieval algorithms at EORC

The Advanced Microwave Scanning Radiometer (AMSR) is a multi-frequency, dual-polarized microwave radiometer that detects microwave emissions from the Earth's surface and atmosphere. Various geophysical parameters, particularly those related to water (H2O), can be estimated from AMSR data. In addition to the proven parameters such as water vapor, precipitation, and sea surface wind speed, novel ...

متن کامل

Capabilities of data assimilation in correcting sea surface temperature in the Persian Gulf

Predicting the quality of water and air is a particular challenge for forecasting systems that support them. In order to represent the small-scale phenomena, a high-resolution model needs accurate capture of air and sea circulations, significant for forecasting environmental pollution. Data assimilation is one of the state of the art methods to be used for this purpose. Due to the importance of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2014